Ich bin wirklich versuchen, aber kämpfen, zu verstehen, wie Autoregressive und Moving Average arbeiten. Ich bin ziemlich schrecklich mit Algebra und Blick auf es nicht wirklich verbessern mein Verständnis von etwas. Was ich wirklich lieben würde, ist ein extrem einfaches Beispiel für 10 zeitabhängige Beobachtungen, damit ich sehen kann, wie sie funktionieren. So können Sie sagen, dass Sie die folgenden Datenpunkte des Goldpreises haben: Zum Beispiel, was wäre der Moving Average von Lag 2, MA (2), oder MA (1) und AR (1) oder AR (2) Ich lernte traditionell über Moving Average so etwas wie: Aber wenn man ARMA-Modelle betrachtet, wird MA als eine Funktion der vorherigen Fehler-Begriffe erklärt, die ich nicht bekommen kann meinen Kopf. Ist es nur eine fancier Art und Weise der Berechnung der gleiche Sache fand ich diesen Beitrag hilfreich: (Wie SARIMAX intuitiv zu verstehen), aber Whist die Algebra hilft, kann ich nicht sehen, etwas wirklich klar, bis ich ein vereinfachtes Beispiel davon zu sehen. Angesichts der Goldpreisdaten, würden Sie zunächst schätzen das Modell und dann sehen, wie es funktioniert (Impulsantwort-Prognosen). Vielleicht sollten Sie verengen Sie Ihre Frage nur auf den zweiten Teil (und verlassen Schätzung beiseite). Das heißt, Sie würden ein AR (1) oder MA (1) oder was auch immer Modell (z. B. xt0.5 x varepsilont) und fragen Sie uns, wie funktioniert dieses Modell arbeiten. Ndash Richard Hardy Für jedes AR (q) - Modell ist der einfache Weg, um die Parameter (s) zu schätzen ist OLS verwenden - und führen Sie die Regression von: pricet beta0 beta1 cdot Preis dotso betaq cdot Preis Lets do so (In R): (Okay, also ich betrogen ein wenig und verwendet die Arima-Funktion in R, aber es liefert die gleichen Schätzungen wie die OLS-Regression - versuchen Sie es). Nun kann man sich das MA (1) - Modell ansehen. Jetzt unterscheidet sich das MA-Modell vom AR-Modell. Der MA ist gewichteter Durchschnitt von Fehlern der Vergangenheit, wobei, da das AR-Modell die vorherigen Perioden die tatsächlichen Datenwerte verwendet. Der MA (1) ist: pricet mu wt theta1 cdot w Wo mu der Mittelwert ist und wt die Fehlerterme sind - nicht der previoes-Wert des Preises (wie im AR-Modell). Nun, leider, können wir nicht schätzen die Parameter durch etwas so einfach wie OLS. Ich werde nicht die Methode hier decken, aber die R-Funktion arima verwendet maximale likihood. Lets try: Hoffe, das hilft. (2) Was die Frage MA (1) betrifft. Sie sagen, der Rest ist 1.0023 für den zweiten Zeitraum. Das macht Sinn. Mein Verständnis des Restes ist die Differenz zwischen dem prognostizierten Wert und dem beobachteten Wert. Aber Sie sagen dann den prognostizierten Wert für Periode 2, wird unter Verwendung des Restwertes für Periode 2 berechnet. Ist das richtig Isn39t der prognostizierte Wert für Periode 2 nur (0.54230 4.9977) ndash Will TE Aug 17 15 um 11: 24Documentation ist das unbedingte Mittel von Der Prozess, und x03C8 (L) ist ein rationales, unendlich langsames Verzögerungsoperatorpolynom (1 x03C8 1 L x03C8 2 L 2 x2026). Hinweis: Die Constant-Eigenschaft eines arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Stabil ist. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Zusätzlich ist das Verfahren kausal, vorausgesetzt das MA-Polynom ist invertierbar. Dh alle Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox forciert Stabilität und Invertierbarkeit von ARMA Prozessen. Wenn Sie ein ARMA-Modell mit Arima angeben. Erhalten Sie einen Fehler, wenn Sie Koeffizienten eingeben, die nicht einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom entsprechen. Ähnlich erfordert die Schätzung während der Schätzung Stationaritäts - und Invertibilitätsbeschränkungen. Literatur 1 Wold, H. Eine Studie in der Analyse stationärer Zeitreihen. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr CountryARMA-Modell Dieses Beispiel zeigt, wie die Impulsantwortfunktion für ein autoregressives Moving Average-Modell (ARMA) dargestellt wird. Das ARMA (p. Q) - Modell ist gegeben durch Ein ARMA-Prozess ist stationär, vorausgesetzt, dass das AR-Operator-Polynom stabil ist, dh alle seine Wurzeln liegen außerhalb des Einheitskreises. In diesem Fall ist das Inverspolynom des unendlichen Grades,. Hat absolut summierbare Koeffizienten, und die Impulsantwortfunktion zerfällt auf Null. Schritt 1. Geben Sie ein ARMA-Modell an. Schritt 2. Zeichnen Sie die Impulsantwortfunktion auf. Zeichnen Sie die Impulsantwortfunktion für 10 Perioden. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Bitte lesen Sie mathworkstrademarks für eine Liste anderer Marken, die Eigentum von The MathWorks, Inc. sind. Andere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wähle dein Land
No comments:
Post a Comment